
AL. WISCONSIN UNIV. MADISON . AUG 81

UNCLASIF IEDr w fo0 PEME E TT FTE A BSE CE IEC)hh h E IB"

IlME

ILI' ILI

III11I1.25 111 I 1.6

AD-A 10 054

IMPLEMENTATION OF THE DATABASE MACHINE DIRECT

H. Boral, et al

University Of Wisconsin
Madison, WI

Aug 81

ml ~d =.

i I I I III I

U.. . , , , ..,...,:=Hl I

V 0

oCOMPUTER SCIENCES
DEPARTMENT
University of Wisconsin
Madison

Implementation
of the

Database Machine DIRECT

Haran Boral
David J. DeWitt
Dina Friedland

Nancy F. Jarrell
W. Kevin Wilkinson

Computer Sciences Technical Report #442

August 1981

t IEg IV

NATIONAL TECHNICAL
INFORMATION SERVICE

VA I0PAnIIl 9 COuufftCIWgNgi6. VA. 22i,

UNCLASSIF IED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta EntOPed0

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
OEFORE COMPLETING FORM

I. R EPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtle). TYPE OF REPORT & PERIOD COVERED

IMPLEMENTATION OF THE DATABASE MACHINE DIRECT

s. PERFORMINQ ORO. REPORT NUMBER

7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBERem)

Haran Boral, David J. DeWitt, Dina Friedland, Contract #s:
Nancy F. Jarrell, W. Kevin Wilkinson DAAG29-79-C-0165 and

DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
University of Wisconsin AREA & WORK UNIT NUMBERS

Computer Sciences Department
Madison, Wisconsin

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Institute for Research in Management August 1981
Information and Computer Science 13. NUMBER OF PAGES

115 O'Keefe Bldg, GIT, Atlanta, GA 30332
14. MONITORING AGENCY NAME A ADDRESS(il dillerent from Cantrolllnd Ofice) IS. SECURITY CLASS. (of the report)

UNCLASSIFIED
ISa. "DECL ASSI FICATION/ DOWNGRAOING

SCHEDULE
None

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetact entered In Block 0. It different from Report)

Same

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side It necessary med Identify by block number)

DIRECT Parallel Processors
Data Base Machines Data Flow Machines
Data Base Computers Relational DBMS
Associative Processors
Backend Data Base Computers

20. ABSTRACT (C affbue m reverse eid If necoesary and Identity by block number)

-"DIRECT is a multiprocessor database machine designed and implemented at the
University of Wisconsin. This paper describes our experiences with the implemen-
tation of DIRECT. We start with a brief overview of the original machine proposal
and how it differs from what was actually implemented. We then describe the
structure of the DIRECT software. This includes software on host computers that
interfaces with the database machine; software on the back-end controller of DIREC
and software executed by the query processors. In addition to describing the
structure of the software we will attempt to motivate and justify its design and

DO 147 EDITONOf'INOV6SISOBSOLETE UNCLASSIFIED

SECUmTy CL.ASSIFICATION OF ThIS PAGE (When eto Entered)

Continuation of 20. Abstract:

implementation. We also discuss a number of implementation issues (e.g., deougging
of the code across several machines). We conclude the paper with a list of the
"lessons" we have learned from this experience.

w{

II

Imp lementat ion
of the

Database Machine DIRECT

Haran Boral
David J. DeWitt
Dina Friedland

Nancy F. Jarrell
W. Kevin Wilkinson

Computer Sciences Department
University of Wisconsin

Madison, Wisconsin

This research was partially supported by the National Science
Foundation under grant MCS78-01721, the United States Army under
contracts #DAAG29-79-C-0165 and #DAAG29-80-C-0041, and the
Department of Energy under contract #DE-AC02-81ER10920.

I/'#

ABSTRACT

DIRECT is a multiprocessor database machine designed and
implemented at the University of Wisconsin. This paper describes
our experiences with the implementation of DIRECT. We start with
a brief overview of the original machine proposal and how it
differs from what was actually implemented. We then describe the
structure of the DIRECT software. This includes software on host
computers that interfaces with the database machine; software on
the back-end controller of DIRECT; and software executed by the
query processors. In addition to describing the structure of the
software we will attempt to motivate and justify its design and
implementation. We also discuss a number of implementation
issues (e.g., debugging of the code across several machines). We
conclude the paper with a list of the "lessons" we have learned
from this experience.

1. Introduction

DIRECT is a relational database machine whose design was

begun in 1977. A detailed description of the proposed hardware

organization of DIRECT is presented in (DeWi79a]. Related

research results can be found in [DeWi79b,Bora8la,Bora8Oa]. The

purpose of this paper is to describe the implementation of DIRECT

and our experiences during the implementation. We will discuss

the present hardware organization, the design of the software,

and the lessons that we have learned by working on this project.

This should not be considered a post-mortem, however. Work con-

tinues and DIRECT is still evolving.

Numerous database machine designs have been proposed since

the early 1970's and a number of distinct approaches to the

design of such machines have been identified (see [Hawt8la]

and (Hawt8lb] for two different classifications). However,

despite approximately a decade of active interest, very few sys-

1tems have been implemented. Presently, (to our knowledge) there

are three operational database machines: the IDM 500 from

Britton-Lee Inc. [Epst80a], CAFS from ICL Ltd. (Babb79a], and

DIRECT. Since both the 1DM 500 and CAFS are commercial database

machines it is highly unlikely that we shall see any published

information about the implementation experiences of either

machine - in particular, a candid admission of the errors made

By implemented, we mean that a user can sit at a terminal in
his office and execute queries that are specified in a high-level
query language (e.g. QUEL, SEQUEL). We view remote access to da-
tabase software running on a separate machine (as in the ADABAS
"database machine") as a networking problem.

2

and/or the success of methods used. Thus, we feel that a

description of the implementation decisions that we made and a

summary of our experiences will most certainly aid future data-

base machine implementors in their work.

DIRECT has been operational since early in the spring of

1980. Presently (Summer 1981), users can interact with DIRECT

through an INGRES [Ston76a] interface. DIRECT supports all the

relational operators (as in INGRES) except aggregate operations

and appends. Future plans for DIRECT include incorporation of

aggregate operations, expansion of the hardware, and an empirical

performance evaluation.

In Section 2, we present an overview of the design of DIRECT

and describe the present implementation. Section 3 describes the

design of the DIRECT software. In Section 4, we present the

actual implementation techniques used. Finally, our conclusions

and a discussion of what we have learned by implementing DIRECT

is contained in Section 5.

2. DIRECT System Architecture

2.1. Background

The DIRECT project began in 1977 as a consequence of several

loosely related events: experience with INGRES on a PDP 11/45,

exposure to the original paper describing RAP [Ozka75a], and the

acquisition of five LSI 11/03 processors through the National

Science Foundation Research Equipment Program.

Our experiences with INGRES led us to feel that a back-end

database machine for INGRES (or an INGRES-like DBMS) could

Smlmme mmmeelemm mmmme

3

greatly enhance performance. While we felt that RAP could indeed

serve as a back-end database machine and improve the performance

of a DBMS it suffered from a number of problems. RAP.l (the ver-

sion of RAP described in [Ozka75a]) has a single instruction

stream, multiple data stream (SIMD) architecture. The primary

implication of this organization is that only a single instruc-

tion can be executed at a time. Thus, performance improvements

over a conventional DBMS can only be achieved through the use of

intra-instruction parallelism. An additional, unrelated, problem

is that the entire database in RAP.l must reside on a fixed head

disk. We felt that these two factors would severely limit the

performance of a large scale implementation of RAP.
2

One of the goals of the design of DIRECT was to allow for

the simultaneous execution of a number of instructions, possibly

from different queries. We felt that such a capability is neces-

sary in order for a database machine to support a high volume of

transaction processing for a given time unit. Another design

goal was to allow for the execution of queries on databases (or

portion of databases) of arbitrary size.

2.2. Original DIRECT Architecture

As originally conceived, DIRECT consisted of six main com-

ponents:
(1) A number of host processors with which users interact. Each

host provides a user interface and a number of data manage-
ment functions (e.g. query compilation).

2 The designers of RAP recognized the limitations of RAP.1 at
about the same time. Its current design can be found
in [Schu79a].

4

(2) Some number of mass storage devices on which the database
resides.

(3) A set of processors (termed query processors) responsible
for the execution of relational operations on the database.

(4) A set of memory modules constructed from charge coupled
ddevice (CCD) chips that are used as a shared-disk cache for
The query processors.

(5) A crossbar switch connecting the query processors to the CCD
modules and the mass storage devices to the CCD modules.

(6) A back-end controller responsible for communication with the
hosts and controlling the query processors, CCD memory
modules, and mass storage devices.

A diagram of a sample DIRECT configuration is shown in Figure 1.

User queries on a host are translated into a tree format,

then compiled and forwarded to the back-end controller. (An

example of a query in a tree format can be seen in Figure 5).

The back-end determines the "optimal" number of processors that

should be assigned to the query. Processors are assigned to an

instruction (an instruction corresponds to a relational operator)

when it becomes enabled, i.e., when its input data exists. Thus,

leaf instructions in the compiled query tree are immediately

enabled. Non-leaf nodes must wait unt-il their children have pro-

duced some or all of their output data.

DIRECT was designed to support both intra- and inter-

instruction concurrency. To allow for concurrency within an

instruction each relation is divided into fixed size pages. Dur-

* ing the execution of an instruction a query processor will

operate on one page of a relation ht a time. To insure that each

processor examines the correct subset of pages, assignment of

pages to the processors is centralized and performed by the

back-end. When a processor is ready to examine another page it

u 0

a 00D -

-4

rz

>4-

UEE4

WU2 C n aU2u

requests the "next" page from the back-end. The back-end

responds with the address of a CCD module containing a page to be

examined. By maintaining various control tables in its memory

the back-end can insure the correct action of a number of query

processors executing the same code in parallel.

Inter-instruction concurrency also requires management by

the back-end. In this case care must be taken that at the end of

the concurrent execution of two or more instructions the database

is in a consistent state. Since each processor must request a

cache address from the back-end before it actually examines the

page, consistency can be guaranteed by the back-end.

Another task for which the back-end is responsible is over-

seeing the transfer of data from the mass storage devices to the

shared cache. This is done either in anticipation of a request

or in response to one. Anticipatory paging in DIRECT can be

effective because the reference strings are known in advance (a

property of the algorithms used) . If indices were used then the

reference strings would be constructed dynamically, precluding

anticipatory paging.

The shared cache consists of several CCD memory modules.

Each module holds 16 Kbytes of data (the size of a page of a

relation). The memory modules are connected to the query proces-

sors by a crossbar switch that has the following two properties:

(1) Two or more processors can read the same cache frame (memory
module) simultaneously.

(2) Two processors can read or write two distinct cache frames
simultaneously.

6

In DIRECT, the memory modules are the active units in a data

transfer operation while the processors are passive. This means

that a page stored in some cache frame can be broadcast to any

number of processors. Details of the crossbar switch are

in [DeWi79a].

A final comment about DIRECT is that its organization falls

into the multiple instruction stream, multiple data stream (MIMD)

category. Although DIRECT could operate in MIMD mode, and in

past publications we have referred to it as an MIMD machine, it

in fact operates as a reconfigurable multiple SIMD machine. That

is, typically more than one processor is assigned to the execu-

tion of an instruction and at a given time instance more than one

instruction will be active.

2.3. Current DIRECT Architecture

The current DIRECT configuration is shown in Figure 2. It

consists of the following components:
(1) A PDP 11/40 running the UNIX operating system that doubles

as a host processor and the back-end controller.
(2) 8 LSI 11/23 computers, each with 136 Kbytes of main memory.
(3) A multiport 1/2 Mbyte memory addressable on 512 byte boun-

daries. The unit of transfer is an integral number of 512
byte pages. Although this memory is constructed using 16K
bit CCD chips, the logical operation of the memory is
independent of the technology employed.

(4) A 40 Mbyte disk.

(5) A broadcast bus interconnecting the query processors, the
back-end, and the disk 3 which we term the control/result
bus. This bus is used for the transmission of control

3 Logically, the disk is connected to both the bus and the
multiport memory. Physically, a processor is used.

4 In the text we shall refer to it as the control bus.

E44

N,,

0

H I,

E-4 E.4

44

'E-4

U, U,
U, U,

Z*

7

information between the query processors and the back-end;
and transmission of the result relation from the disk to the
back-end.

We chose to implement the crossbar switch and CCD memory

modules of the original DIRECT design as a multiport memory pri-

marily for cost reasons. However, the current configuration

should attain the same performance were we to use the design that

was originally proposed. Each query processor is "fooled" into

thinking that the cache can be accessed by all processors in

parallel. An LSI 11/23 can read data at a rate determined by its

Q bus speed - about 1/2 Mbyte/second. The multiport CCD memory,

on the other hand, can transfer data to and from a buffer associ-

ated with each processor at a rate of 4 Mbytes/second. The phy-

sical unit of transfer between the multiport memory and a query

processor is an integral number of 512 byte pages. The logical

unit of transfer is 16 Kbytes. The multiport memory, in response

to a number of requests, time shares the data delivery among the

processors. Since the data can be delivered 8 times as fast as a

single processor can read it, even if all the processors have

outstanding requests these can be satisfied without delays.

In the event that the number of processors in the configura-

tion would grow beyond eight, each processor may spend some idle

time in reading from the cache during periods of high I/O

activity. However, it is not clear how many processors are

required before the waiting time becomes significant. In a bal-

anced system, at any given instant not all the processors will

require access to the multiport memory.

8

3. Dsgofthe DIRECT Software

In this section, we describe in some detail the host, the

back-end, and the query processor process structures. While the

host software is a modified version of INGRES, the back-end

software was designed to process relational queries with a max-

imum degree of parallelism. Each query processor has some

resident code (a primitive kernel) and executes instruction pack-

ets received from the back-end. We describe how the code for the

query processors is generated and how a query processor operates

during the execution of a code packet. Finally, we discuss the

problem of placing the schema and present the solution we opted

for.

3.1. The Process Structure of the DIRECT Host Software

From the beginning of the DIRECT project we assumed that we

would use II4GRES as the basis for implementing the user interface

to DIRECT. This was done in order to minimize implementation

time and maintain compatibility w.th the most widely used rela-

tional database system. 5

Because of the address space limitations of the PDP 11 com-

puter, INGRES runs as a number of processes for each active user.

The actual number of processes varies between four and six

depending on the particular model of PDP 11 used and whether

5Compatibility is a key issue. We feel very strongly that if
database machines are to become comercially viable they must
support existing DBMS software in a completely transparent
manner.

9

INGRES query modification has been invoked.6

The version of INGRES which formed the basis for the DIRECT

host software runs as five processes as shown in Figure 3. The

monitor process is responsible for interacting with the user.

Once a query has been entered by a user, it is sent by the moni-

tor to the parser process. This process translates the query,

using information from the schema, into in a binary tree format.

If the query is not a utility query (e.g. print a relation) it is

executed by the Decomposition and OVQP (One Variable Query

Processor) processes (see [Wong76a] for more details). Finally,

utility commands (to print, create, destroy, etc. relations) are

executed by the DBU (Data Base Utility) process.

Since query execution is conveniently isolated as two

processes, implementing the host software for DIRECT involved

simply eliminating the Decomposition and OVQP processes. Figure

4 contains the process structure of our modified form of INGRES.

The monitor, parser, and DBU processes perform the same functions

as before. The CIDI process performs two functions. Its primary

purpose is to compile INGRES queries into a form appropriate for

execution by DIRECT (see Section 3.2). Its second function is to

act as an interface between these four processes (for which there

is an instance for every active INGRES user) and the back-end

controller (which is on a separate machine).

Although we would have preferred to avoid modifying the

other processes (in order to minimize the effect of each new

6 INGRES on the VAX 11/780 runs as two processes.

MONITOR PARSER DECOMP. OVQP DBU

INGRES PROCESS STRUCTURE

Figure 3

MONITOR PARSER CIDI DBU

OPEN/CLOSE DB QUERY PACKETS

,UTILITY COMMANDS

TO BACK-END

HOST PROCESS STRUCTURE

Figure 4

10

release of INGRES), we found it necessary to slightly modify the

monitor and DBU processes. The monitor process was modified by

the addition of two procedures to notify the back-end controller

of a user opening a database upon invoking INGRES and a user

closing a database upon exiting INGRES. The DBU p rocess was

slightly modified to handle differences in format and page size

between INGRES and DIRECT databases. The parser process was not

mod if ied.

3.2. The Process Structure of the DIRECT Back-End Controller

Once the functions of the host had been clearly defined, we

were able to assume that the back-end machine would receive

queries compiled into "packets" of instructions. Upon receiving

a packet, the back-end becomes responsible for controlling the

packet execution and for returning the result of the query to the

host. An analysis of the services the back-end controller would

have to provide revealed three main functions: catalog manage-

ment, packet and instruction scheduling, and memory management.

The first function requires that the back-end execute utility

programs such as create and destroy a relation, or print a rela-

tion. The second function consists of controlling the execution

of a packet: determining which instructions in the packet are

executable and allocating a certain number of available proces-

sors to enabled instructions. This function is similar to the

role of a scheduler in an operating system. The third function

is the management of the shared cache. Here, the back-end pro- I

cessor plays the role of virtual memory manager in an operating

system.

To some extent, these functions are independent of each

other and services in each of the above three categories could be

provided simultaneously. Thus, there is room for some parallel

activity in the back-end controller itself. We felt that by

implementing each of the three functions as a separate process we

would be able to measure the actual degree of parallelism possi-

ble in the back-end. Then, if additional hardware became avail-

able, we would move each process to a separate computer and

exploit the parallelism. The three processes were named UTIL,

PKT, and MEM respectively.

By maintaining appropriate data structures (such as relation

descriptors and task descriptors) and by exchanging synchroniza-

tion messages among themselves and with the query processors, the

three processes are able to supervise the query processors. In

order to efficiently manage the limited amount of primary memory

available on the back-end, each process was allocated a "heap"

from which the data structures were allocated dynamically as

needed during execution of a query. Unfortunately, C (the imple-

mentation language) did not provide us with adequate support and

we had to implement the heap as a fixed size array and write our

own heap management routines.

To illustrate the functions of the back-end processes more

clearly we shall describe in detail the execution of the query

shown in Figure 5. Some of the data structures and the main mes-

sages exchanged during the execution of this query are illus-

JOIN: C, B D

PROJ: A- C SEL:S. B

SEL: R- A

EXAMPLE QUERY TREE

Figure 5

CL1

12

trated in Figure 6.7Each message is shown as an arrow between

the box representing the sending process and the box representing

the receiving process. In addition, each arrow points to the

data structure to be updated upon receipt of the message. we

have also shown (in the case of the GETPAGE and NEXT-PAGE mes-

sages) the paths followed across data structures to reach the

desired information.

Relations R and S, in Figure 5, are permanent relations in

the database. Both relations are restricted resulting in the

temporary relations A and B respectively. Relation A is pro-

jected and the result (relation C).is joined with relation B to

form relation D. The query packet generated by the CIDI process

(see Section 3.1) will be sent to the PKT process. PKT will

first send a message to UTIL requesting the creation of the 4

temporary relations A, B, C, and D. Next, it will create a Pre-

cedence Matrix (OPPMO in Figure 6) showing the dependencies

between the instructions.

For each enabled instruction (one whose inputs are avail-

able) PKT will request statistics information from UTIL, such as

relation size in pages. This information is used in determining

the number of processors that should be allocated to the instruc-

tion. Since the projection and Join depend on output generated

by the two selections, only the selections are enabled. Thus,

PKT only requests information about relations R and S. Upon

This figure is not complete. It is merely intended to
sketch out some of the activities in the back-end to aid the
reader in reading the text. A much used detailed figure (known
as Othe map") exists for internal documentation purposes.

BACK-END CONTROLLER
HOST COMPUTER PKT PROCESS

HEAP

PPM

COMPILED READY
QUERY LIST

DIRECT FRONT-END

LIST

OPEN/CLOSE

C OMPI LE D '

'RELATION

QUERY PROC1 REL DESC

HEAP AGE

REL PAGE
ASSNIGN AME TABLE

ADDRESS
MEM PROCESS

QUERY PROCESSORS

• PCB

GET PAGE PAGE ! H
REQUEST TABLE

QUERY PROC PE
PAGE REPLY

IA
P

NEXT-PAGE CCDMAP

REQUEST INSTR

Figure 6

13

receipt of the information both selections are ready to be exe-

cuted. Ready instructions are placed on the READYLIST. When a

number of query processors (possibly less than the 'optimal"

number, and perhaps only one) become available an instruction is

removed from the READYLIST, added to the EXLIST, and ini-

tiated. 8 PKT sends an assignment message to each allocated pro-

cessor over the control bus. This message includes the compiled

code to be executed (see Section 3.3). MEN is also informed by

PKT each time a processor is assigned to an instruction.

MEM uses a data structure known as the processor control

block ("PCBE in Figure 6) to maintain information on the activity

of each processor. Additional data structures, associated with

executing instructions are maintained so that an instruction exe-

cution can be monitored.

A query processor executing an instruction requests pages to

be examined from MEN. Such messages are exchanged over the con-

trol bus. There are three types of page requests (described in

more detail in [DeWi79a]). These are: NEXTPAGE, GETPAGE, and

NEW-PAGE. A NEXT-PAGE request is used when a page of a relation

is to be processed by a single processor, as in the selection

operation. A processor requesting a NEXT-PAGE gets any page of

the relation which has not yet been examined by another proces-

sor. A GET-PAGE request is used when a p~rocessor is to examine a

specific page (for example one part of a stream of pages).

8 There are a number of considerations used in 'selecting which
of the two selections should be initiated first. In this paper
we do not concern ourselves with this question since it is peri-
pheral to the main subject.

14

Finally, a NEWPAGE request is used when a processor is about to

write a new page of a relation.

Note that MEM is truly a virtual memory manager. Pages

residing in the multiport memory are grouped by classes depending

on the operator that is currently using them. Classes are ranked

according to priority. In the event that all the pages in the

cache belong to the same class a modified LRU algorithm is

employed to pick a candidate to be swapped out.

MEM responds to GETPAGE and to NEXTPAGE requests with the

address of the page frame containing the page to be examined by

the requesting processor. The processor then initiates a memory

access to that frame in the multiport memory. In the event of a

NEWPAGE request, MEM must find an empty page frame in the mul-

tiport memory and send its address to the requesting processor.

At times this may necessitate writing a page from one of the

cache frames to disk. MEM also updates the data structures asso-

ciated with the requesting processor and the instruction after

each request.

When all of the relation pages have been examined MEM

responds to NEXTPAGE and GETPAGE requests with an "end-of-

relation" message. Upon receipt of this message a query proces-

sor flushes its output buffer by executing a NEWPAGE and informs

PKT that it is done. PKT, by examining a data structure associ-

ated with each instruction, can determine when an instruction has

completed (i.e. all the processors assigned to the instruction

have terminated). At that time PKT updates the Precedence Matrix

and checks to see if any instructions are enabled as a result of

.4

15

the termination of the instruction execution.

For the query of Figure 5, termination of the selection

operation R->A will ena;)le the projection. (Note that the join

is not enabled until both the second selection and the projection

have terminated). PKT requests statistics on relation A from

UTIL. Upon receipt of the reply the projection is added to the

READYLIST. The subsequent actions taken by the back-end

processes during the execution of the projection are similar to

those described above. When the projection terminates the join

is enabled.

After the execution of the join instruction, PKT sends a

message to UTIL requesting that it print the result relation

(that is, send it to the host for printing) and destroy the tem-

porary relations created for the execution of this packet. PKT

also informs MEM of the termination of the query packet and both

processes destroy the data structures used to manage the packet

execution.

Soon after implementation began we decided to combine MEM

and UTIL into a single process. Both processes manage and use

portions of the schema. In order for the two processes to run

separately each would have to inform the other of any changes

made. Since UTIL was expected to modify the schema relatively

infrequently compared to MEM it seemed that the majority of the

messages from MEM to UTIL informing it of changes to the schema

would be wasted. We felt that the overhead associated with send-

ing these messages would far offset any gains due to concurrent

execution of the two processes.

16

3.3. Code Generation

In addressing the question of how to execute queries on the

query processors, we were faced with two options: we could

either have an interpreter for the query tree in each query pro-

cessor and interpret instructions; or we could compile (on the

host) the query tree into machine language for the query proces-

sor and execute the queries directly. The advantage of inter-

preting the query tree was the time and space savings in sending

qu'eries from the host through the back-end to the query proces-

sors. The query tree (as it is used by INGRES) formed a concise

specification of a query and would not heavily load the communi-

cation lines. Also, writing an interpreter for the query tree

would have been considerably easier than writing a code genera-

tor. The interpreter could be written in a high-level language

and would be relatively insulated from changes in the query pro-

cessor hardware and software.

One constraint that we faced was the amount of memory avail-

able for instructions in the query processors. We had already

decided to allocate three 16 Kbyte page buffers in each query

processor which left only 8 Kbytes of instruction space. 9That

space was to be divided among the interpreter and routines for

the message and page I/O. Clearly it would have been a tight

squeeze. Another concern was execution time. We wanted the

query processors to run as fast as possible. Experience with

INGRES indicated that interpreting queries does not always

9our initial implementation utilized PDP 11/03 microcomputers
with 56 Kbytes of memory available for program and data.

17

provide satisfactory response time. Thus, we chose to compile

user queries into machine language for the query processor.

Having chosen the compiled approach, our next task was to

decide precisely what routines should be resident in a query pro-

cessor and what should be sent in a query packet. For example,

because the restrict algorithm is essentially the same regardless

of the relation referenced or the actual selection criterion, it

would have been possible to include a restrict code "template" in

the query processors. The template would consist of an outer

loop which opened the relation and executed repeated NEXTPAGE

calls. An inner loop would sequence through the tuples of a page

and apply the selection criteria. In this approach, all that

need be sent from the host is a "compare" subroutine to apply the

selection criteria specified in the query and a "copy" subroutine

to move each selected tuple to the result page buffer (of course,

we would also send an instruction header which identified the

instruction, the relation, etc.). Similarly, there could be per-

manently resident join, aggregate, projection, ... templates.

We did adopt the template approach but rather than include

templates for each possible instruction in all the query proces-

sors (which, again, would have required too much memory), we

decided to combine the query- and relation-dependent compare and

copy subroutines with the code templates on the host as part of

query compilation. This saved buffer space in the query proces-

sors since we only needed to reserve space for the largest code

template (rather than all of them). It also made instructions

run slightly faster because having permanently resident templates

18

in the query processors required a subroutine call to the "corn-

pare m routine for each tuple processed. By combining the tem-

plate and the compare and copy code in the host, we were able to

eliminate that subroutine call.

While this approach looked promising from the beginning we

were initially concerned that sending both "templaten and the

customized "compare" and "copy" would consume a large fraction of

the available communications bandwidth. This fear was misguided

since a much larger consumer of the available communications

bandwidth are the NEXTPAGE, GETPAGE and NEWPAGE requests.

Instruction packets are relatively infrequent.

This design proved satisfactory with one exception. In

hindsight, it would have been better to have the PKT process in

the back-end controller (and not the CIDI process on the host)

combine the generalized instruction templates with the

instruction-dependent compare and copy code generated by the host

immediately before initiating an instruction. This is because

each code template is relatively large (e.g. the length of the

code template for the join operation is approximately 300 bytes)

so an entire query packet (consisting of an arbitrary number of

relational algebra operations) can be arbitrarily large. Because

the PKT process had only enough buffer space to hold a few query

packets at a time, it was necessary to store idle packets (i.e.

those for which no instruction has been initiated) on disk.

19

3.4. Schema Placement

Once the basic process structure of the host and back-end

controller software was selected, it was necessary to decide

where the schema should be placed. The host (particularly the

parser, CIDI, and DBU processes) requires information about rela-

tion and attribute formats in order to parse and compile user

queries. The back-end controller software also needs a limited

amount of schema information in order, for example, to know how

many processors to assign to an instruction. The choice we made

was to distribute the schema information across both systems.

This further simplified implementation of DIRECT since the INGRES

schema organization was left intact and INGRES routines to look

up information in the schema are heavily utilized by the code

generation procedures of the CIDI process. However, care had to

be exercised to insure that the duplicate schema information was

kept in a consistent state. By using that INGRES software which

prevents a user from destroying a relation being used by another,

we found that keeping the duplicated schema information in a con-

sistent state was straightforward.

3.5. Query Processor Operation

In Figure 7, a map of a query processor's memory is shown.

The query processor monitor basically loops, waiting for an

instruction to arrive from the back-end controller. Instructions

are read into the instruction buffer by the monitor which then

starts execution by jumping into the instruction buffer as if it

were a subroutine. The instruction invokes the page and message

20

message handler

page handler

query processor monitor

source source result
page 1 page 2 page
buffer buffer buffer

instruction buffer

Figure 7
Layout of Query Processor Memory

handlers as necessary and when finished, returns control to the

monitor.

4. Implementation Issues

4.1. Interprocess Communication

Our design required an interprocess communication (IPC)

facility that would enable processes on the host computer, the

back-end controller, and the query processors to communicate with

each other. On the host, each CIDI process ("representing" a

21

user query) must send query packets to PKT, and utility messages

(e.g. create a relation) to UTIL. It must also wait for replies

from these processes indicating the status of the operation and

possibly a result. On the back-end, PKT, MEM and UTIL must com-

municate with each other. PKT and UTIL must also communicate

with an unspecified and varying number of CIDI processes on the

host. Finally, PKT and HEM communicate with the query proces-

sors.

In Version 6 UNIX, pipes are used for IPC. One feature of

pipes is that processes communicating over a pipe must be related

(i.e. a parent and a child). Although there was no problem in

making PKT, MEM, and UTIL siblings there was no easy way of doing

that for the CIDI processes. Each CIDI process is part of an

DIRECT process chain that is formed at the time a user invokes

DIRECT and destroyed at the time the user exits from DIRECT.

Pipes, therefore, proved unsuitable for communication between the

back-end processes and the CIDI processes on the host.

One alternative to pipes (in Version 6 UNIX) is

ports [Zuck77a]. Ports are similar to pipes in their capabili-

ties and usage. 10 The main difference between a port and a pipe

is that two or more unrelated processes can communicate over a

port. Each port is "owned" by a single process which is the only

process that can read from it.11 Any number of other processes

10 See Section 5 for a discussion of some of their shortcom-
ing s.

11 Actually, since in UNIX children processes inherit all
their parents property, a child of a port owner could also read
from that port. In practice, chaos would result were a program-

I1

22

can write to the port. We decided to use ports rather than pipes

because they offered us the possibility of writing a single com-

munication subsystem that could be used by all tie processes on

all the machines. In retrospect, this was a good decision

because debugging the communication code proved to be a lengthy

and cumbersome task.

4.2. Implementation Technique

We began implementation before all the hardware was avail-

able: there were problems with the LSI 11/03 microcomputers that

served as the query processors and the multiport memory was still

under constructiorr. Implementation of the back-end processes on

the one hand and the host CIDI process on the other hand pro-

ceeded independently and in parallel.

Debugging of the DIRECT software occurred in three steps.

In each step we configured a new system. These were known as

FQRYP, QRYP, and CQRYP. In FQRYP both the query processors and

the multiport memory were "faked". Once DIRECT was operational

under FQRYP we moved to QRYP in which actual processors were used

for the query processors but the multiport memory was still

faked. In the final stage, CQRYP, the processors as well as the

multiport memory were used.

To fake a query processor we implemented it as a separate

process which included the resident routines that would otherwise

be present in the query processor's memory. 1 2 Assignment messages

mer to use this capability.
12 Actually, these routines were slightly different - they in-

cluded more debugging features.

mmmmmlm llll~ amI I mJam ...

23

from PKT (those that included code) were read into an array and

were executed by jumping into a particular address in that array.

To fake the multiport memory, we allocated an array of vec-

tors in MEN. Each vector consisted of 512 bytes and represented

a page frame (the page size was reduced from 16 Kbytes to 512

bytes). The number of vectors corresponded to the number of page

frames. Pages were read from the disk into the array. A query

processor still sent a page request to MDI and received a reply

containing a page frame number. Then, the processor initiated a

data transfer from the fake multiport memory by requesting the

contents of a specific page frame from MD. MEK responded with

another message that included the desired page. Although this

procedure was cumbersome and added unnecessary comunication

overhead, it made the move to CQRYP easier than it would have

been had we combined the reply to the request message with the

data transfer message.

The three systems still run. We recently used FQRYP to test

code installed to perform update operations.

4.3. Implementation Time Frame

Our work on modifying INGRES (restructuring the process

structure and writing the code generator) required a little less

than a man-year. We spent an intensive three month period writ-

ing and debugging FQRYP, altogether another man-year. The move

from FQRYP to QRYP took 3 days - we had to redo some of the mes-

sage handling code. While approximately 5 days of effort were

required for the move from QRYP to CQRYP, the actual time period

-- m~a, ,,,m mn m namI

24

was about 4 months during which several hardware bugs were

discovered (and fixed).

it should be noted that one of the reasons the move from

FQRYP to ORYP took such a short time is that the software for

downloading the LSI microcomputers and using the hardware devices

for interprocessor comunication had already been developed by

another group using the processors for research in distributed

operating systems [Solo79a].

To recap, use of emulation as a technique for implementing

the system simplified debugging and allowed us to develop dif-

ferent parts of the system independently and in parallel. Also,

the code written for the emulated system was usable on the

hardware with trivial changes. We still use FQRYP every time a

new addition is made to the system. We feel that this implemen-

tation technique was very successful because it enabled us to

work in an environment where debugging was relatively easy and

because no work had to be duplicated in moving to the hardware.

It should be noted that one reason we were able to follow this

path is that all the computers used were of the same family.

S. What Have We Learned?

In this section we present what we feel to be the important

lessons of our work on DIRECT in the past four years. We briefly

discuss the lessons gained from a simulation of DIRECT, under-

taken early on in the project. We then describe some of the

problems we encountered during the implementation. This is fol-

lowed with an enumeration of the "valuable" lessons we have

25

learned. We close with a list of programiuing tools that we would

have liked to have had and a list of future activities.

5.1. Simulation

After the initial design of DIRECT was completed we under-

took to implement a detailed simulation. Concurrently, we

analyzed parallel algorithms for all the relational operators for

a DIRECT-like architecture. Ideally, both of these efforts

should have taken place before we began work on the implementa-

tion. However, various "economic" factors forced us to commence

implementing the system before sufficient ground work had been

done.

The primary purpose for implementing the simulation was to

study a number of different strategies for allocating processors

to tasks. What began as a small limited-scale project ended up

as a major effort. Once the simulation was running we were

indeed able to select a "best* processor allocation strategy (see

(Bora8la]). We also found out that DIRECT (as described

in [DeW179aJ suffers from a number of problems.

Most important of these is the high cost of controlling the

execution of a query. Our simulation showed that except for

small system configurations (up to 20 processors) the execution

time of various query mixes was dominated by the time required by

the back-end to process the control messages (e.g. NEXT-PAGE).

Another problem is DIRECTs poor performance when executing

selection-only queries. A page of the relation to be restricted

must be moved from the mass storage device into the CCD memory

26

and from there into a processor~s memory before the selection

operation can be applied. Since a selection requires a single

scan of the data most of the execution time is spent doing "use-

less" work (i.e. the I/0 transfers). Yet another problem is that

all data transfers between processors are performed at the page

level through page frames in the CCD. Although this approach

minimizes transfer overhead by grouping data in large units, it

results in a significant amount of page fragmentation. In par-

ticular, we found that processors executing some operation will,

in general, not output full pages. Thus, portions of the CCD

memory remain unused.

The simulation proved very helpful during the actual imple-

mentation in a number of ways. For example, because of the fine

level of detail simulated we had a clear idea of the different

functions the back-end had to perform. This information was used

in determining the process structure in the back-end. We also

learned what data structures were required in order to implement

the needed functions. Finally, the simulation provided us with

the capability of testing different memory management algorithms

to be used by the MEN process.

5.2. Implementation Hassles

DIRECT was implemented using the C language on the UNI-X

operating system. At the outset, we did not appreciate the dif-

ficulties of writing a large system. The lack of structure in C

(as compared with Pascal) exacerbated the problem. Many simple

coding bugs were found only through time-consuming trial-and-

27

error search or serendipity. A related problem was that our

development machine, a PDP 11/40, had insufficient memory to run

UNIX Version 7. Thus, we were unable to take advantage of the

new debugging and development tools available under this system.

our use of ports for interprocessor coumunication resulted

in a number of unanticipated (and serious) problems. A process

attempting to read an empty port is blocked until the port is

filled. This would have been acceptable had there been a way to

detect the presence of a newly arrived message. But there was

not. Similarly, a process attempting to write to a full port is

blocked until sufficient room for the message exists. Since

there were numerous processes writing to each port (for example,

an unspecified number of CIDI processes, MEM, and all the query

processors write to the PKT port), blocking could result as a

side-effect of writing to a full port. We were fearful that this

could lead to deadlock. We therefore placed constraints on the

number of outstanding messages that a process could have at any

given time. While we convinced ourselves that deadlock will be

prevented, this was achieved at a possible performance loss since

each back-end process could not attend to a task until receiving

a reply to an outstanding message.

An additional problem with ports is that large messages may

be split into smaller packets. The intent of this feature is to

prevent a single writer from monopolizing a port. Unfortunately,

message splitting is not under control of the application and it

is difficult to predict when it will occur. The result then, is

that ports cannot really be treated as stream 1/O devices. This

28

greatly complicated the implementation of the communication code

and was a source of numerous bugs.

One of the problems we suffered from was lack of coordina-

tion among ourselves during coding. Initially, each person

worked individually on a separate process. However, later we

began to combine our code. A typical example of the difficulties

we encountered at that stage is when we discovered that in the

MEZ4 process the named constants TRUE, IN, and YES were used

synonymously but defined differently.

5.3. Valuable Lessons

We made two important decisions at the outset of the code

design phase with which we are happy to this day: to use as much

Of INGRES as possible and to work in an emulated environment. We

believe that the short section on implementation time frame (Sec-

tion 4.3) speaks for the success of the emulation method.

The decision to use the INGRES user interface saved several

person years of effort; effort that would have been expended on

rather mundane aspects of DIRECT, at that. Thus, we had a head

start on our implementation by using INGRES. Adapting INGRES to

our needs was niot trivial, however. The system was fairly well

structured but it was commented with restraint (the DIRECT code

is no better in that respect). For example, the INGRES code con-

tained much debug print which was enabled with run-time flags.

But, it was never clear to us how to set those flags. And some-

thing as simple as a global symbol table and cross reference

index would have been very useful. Much time was spent flipping

29

through pages looking for a particular subroutine. In short, for

large programs such as INGRES, modularity and good structure must

be supplemented with auxiliary internal documentation.

DIRECT now supports most of the data manipulation capabili-

ties provided by INGRES. We will soon begin to measure its per-

formance. Instrumentation of the system will most likely yield

some information that will lead to performance improvements.

Unfortunately, the task of instrumenting DIRECT will not be easy

because at coding time we did not put hooks into the code to

enable us to do this. There are certain places that one can be

sure to find performance problems (e.g. access to frequently used

data structures). Nonetheless we regret not having had the

foresight to organize the code better for this task.

A related problem is that of a test database. During our

debugging runs we used a supplier-parts database. This database

consists of 9 relations, the largest of which has 1200 bytes.

The DIRECT page size was reduced from 16 Kbytes to 512 bytes to

test execution of an instruction by more than a single processor.

Although it was necessary to use a small database for debugging,

we now we need a "large" database for testing performance. To

our regret we have not been able to procure a database much

larger than the supplier-parts databise we have been using. One

long-range goal is to compare the performance of DIRECT and

ING RES in processing queries on large databases.

Our experiences with the customized hardware (the multipart

memory and the various interfacing equipment) have led us to feel

that in a university environment one should attempt to minimize

30

the amount of custom designed hardware. Such hardware should be

designed and constructed only after all other alternatives have

been exhausted. It may be the case that a few years from now,

when sophisticated VLSI design tools become available in univer-

sities that custom designed hardware may be easier to get.

One observation that w~e can make about the performance of

DIRECT at this time is that messages between machines require

between 10 and 15 milliseconds. Other distributed systems

researchers have found this cost to be approximately the same.

The majority of this time is spent in the software. Although the

cost of message handling in software can doubtlessly be reduced

(through the use of microcode or even providing some hardware

primitives) the cost of processing a message is likely to remain

high. This is a significant problem, and one that seems to be

steadfastly ignored by designers of distributed systems (includ-

ing multiprocessor database machines).

We conclude with a description of those tools that would

have aided system development. The ability to share data struc-

tures between processes would have simplified the implementation

of the HEM, UTIL, and PKT processes and would have reduced the

number of interprocess messages necessary to exchange information

about the status of an executing instruction, for example. The

most complex code in DIRECT (which has already been rewritten

three times) is the code to handle interprocess messages. The

complexity arises mainly because the Rand port mechanism splits

messages at arbitrary places. A more flexible IPC facility which

permits the process to specify never to split messages would have

31

significantly simplified this section of code. Another desired

feature is the ability to detect the presence of an incoming mes-

sage rather than blocking when a read is attempted on an empty

port. Finally, a more structured programming language with asso-

ciated development system would have certainly facilitated the

debugging task.

5.4. Future Plans

Although DIRECT is operational, it is by no means dead as a

research project. Currently planned activities for the future

include the incorporation of aggregates (including aggregate

functions); instrumenting the code and making it more efficient;

obtaining a "large" database and comparing the performance of

DIRECT to that of INGRES; incorporating concurrency control and

recovery; moving the back-end to a VAX (this entails switching

from Version 6 UNIX to Version 7 and redoing the front-end since

the INGRES process structure for VAX UNIX is different); and mov-

ing MEM/UTIL and PKT to separate processors.

6. Acknowledgements

We would like to finish by thanking the INGRES group, in

particular Bob Epstein and Eric Allman, for their help in advis-

ing us about modifying INGRES. Michael Stonebraker and Gene Wong

were kind to allow various INGRES people to spend time helping

us.

However, despite their counsel, two routines, "copyto" and

"copy_from", still remain a complete mystery to us. These rou-

tines are used to copy UNIX files into relations and vice versa.

iI

32

Initially we attemp~ted to modify these routines so that they

would directly convert UNIX files to and from the DIRECT relation

format. However, the code was so obtuse, we gave up and wrote a

procedure that first converts the file to the INGRES relation

format (which is well documented) and then applies a transforma-

tion to the DIRECT relation format. Perhaps not elegant, but it

works.

33

7. References

[Babb79a]Babb, E., "Implementing a Relational Database by Means
of Specialized Hardware, ACM TODS 4, 1, (March 1979).

(Bora80alBoral, H., D.J. DeWitt, D. Friedland, and W.K. Wilkin-
son, "Parallel Algorithms for the Execution of Relational
Database Operations," ACM TODS, (Submitted October 1980).

[Bora8lalBoral, H. and D.J. DeWitt, "Processor Allocation Stra-
tegies for Multiprocessor Database Machines,O ACM TODS 6,
(June 1981).

[DeWi79a]DeWitt, D.J., "DIRECT - A Multiprocessor Organization
for Supporting Relational Database Management Systems," IEEE
Transactions on Computers c-28, 6, (June 1979).

(DeWi79b]DeWitt, D.J., "Query Execution in DIRECT," P EoceedinLs
of the ACM SIGMOD 1979 International Conference of Manage-
ment o Data, (May 1979).

[Epst80a]Epstein, R. and P. Hawthorn, "Design Decisions for the
Intelligent Database Machine," Proc NCC 49, AFIPS, (1980).

(Hawt8lalffawthorn, P. and D.J. DeWitt, "Performance Evaluation of
Database Machines," IEEE Transactions on Software Engineer-
ing, (To Appear 1981).

[Hawt8lb]Hawthorn, P., "The Effect of the Target Applications on
the Design of Database Machines," Proc of the ACM SIGMOD
1981 International Conference of Management ol Data, (May
19q 81) .

[Ozka75a]Ozkarahan, E.A., S.A. Schuster, and K.C. Smith, "RAP -
An Associative Processor for Data Base Management," Proc NCC
45, AFIPS Press, (1975).

(Schu79a]Schuster, S.A., H.B. Nguyen, E.A. Ozkarahan, and K.C.
Smith, "RAP.2 - An Associative Processor for Databases and
Its Applications," IEEE Transactions on Computers c-28, 6,
(June 1979).

[Solo79a]Solomon, M. and R. Finkel, "The Roscoe distributed
operating system," Proceedings 7th Symposium on Operating
Systems Principles, pp. 108-114 (December 1979).

[Ston76a]Stonebraker, M.R., E. Wong, and P. Kraps, "The Design
and Implementation of INGRES," ACM TODS 1, 3, (September
1976).

[_ 1

34

(Wong76a]Wong, E. and K. Youssefi, "Decomposition - A Strategy

for Query Processing," ACM TODS 1, 3, (September 1976).

[Zuck77a]Zucker, S., "Interprocess Communication Extensions for

the UNIX Operating System: 11. Implementation," R-2064/2-AF,
RAND (June 1977).

